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We investigate a mechanism that effectively transports fluids using vibrational motion imposed

onto fluid boundary with anisotropy. In our experiment, two asymmetric, sawtooth-like structures

are placed facing each other and form a corrugated fluid channel. This channel is then forced to

open and close periodically. Under reciprocal motion, fluid fills in the gap during the expansion

phase of the channel and is then forced out during contraction. Since the fluid experiences different

impedances when flowing in different directions, the stagnation point that separates flows of two

directions changes within each driving period. As a result, fluid is transported unidirectionally.

This ratcheting effect of fluid is demonstrated through our measurements and its working principle

discussed in some detail. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906927]

In order to transport fluid from one place to the other,

many types of fluid pumps have been invented and they have

become an indispensable part of our everyday life. The most

commonly used fluid pumps are centrifugal and peristaltic

pumps. The former often deals with large quantities of fluid

and the latter carries more precisely controlled flux. Small

amount of fluid can be transported using a ratcheting effect,

where asymmetric geometries are often involved to induce the

net motion of the fluid. For instance, it has been observed that

shorebirds use asymmetric capillarity to move drops of water

along their long beak in order to feed and drink.1 Similar

ratchets are found when surface tension plays an important

role on structured surfaces.2–4 At a much smaller length-scale,

colloid particles are made to migrate within a sawtooth-like

geometry when an electrical potential is switched on and off:

particles are transported uni-directionally, thanks to the aniso-

tropic boundary conditions and Brownian diffusion.5–9 Other

types of ratchets also exist in many applications10 where

spatial anisotropy and temporal cyclicality are needed.

In the current work, we study experimentally a simple

pumping mechanism that transports fluid effectively, using

only reciprocal motion and boundary asymmetry. We further

characterize its pumping rate, dependency on some key pa-

rameters. Most importantly, we identify and examine its

working principle as an alternative type of fluid pump.

Further, we discuss its usefulness in future applications.

Our experimental setup consists of two chambers filled

with water that are connected through a structured channel in

between, as shown in Figs. 1(a) and 1(b). The channel is

formed by two identical sawtooth-like panels that are made

from acrylic plastic. Each panel has 12 teeth in the horizontal

direction and height d¼ 6.3 mm over a length L of 7.6 cm

and depth D of 4 cm. The facets of each tooth are made ei-

ther vertical or 45� with respect to vertical (Fig. 1(c)). The

bottom sawtooth is fixed to the base of the chamber. The top

sawtooth, however, is rigidly connected to a wall that

separates the two chambers. This wall may slide vertically,

inside two fluid-tight grooves. An oscillatory mechanism of

the Scotch-yoke type, not shown, drives the upper sawtooth

to reciprocal motion. We control the frequency f and the

peak-to-peak amplitude a of such motion, and the average

gap between the sawtooth panels, G, which can be preset to

any desired value (G> a=2). The pumping flux is measured

by two overflow mechanisms installed on both side of the

setup. They can also be used, by adjusting their relative

height, Dh, to create a hydrostatic pressure difference. Our

working fluid is water through out the quantitative measure-

ments. For flow visualization within the corrugated tunnel,

however, we use a refractive-index-matched fluid11 to the

acrylic. Seeded particles in the fluid are illuminated by a

light sheet that is sent through the bottom, leaving strike pat-

terns that reveals the flow structures inside the channel. It is

observed that as the driving frequency or amplitude exceeds

a threshold, as discussed later, the fluid starts to be pumped

and the pumping direction follows the direction of the teeth.

In Fig. 1, this direction is from left to the right. As Fig. 2

shows, at each gap G and amplitude a, the dependency of the

fluid flux of the pumped fluids follows the same trends but

does not overlap. Each curve shows a threshold over which

the flux increases linearly with the forcing speed fa. If the

forcing speed is rescaled, however, to faL/G, all data col-

lapse onto a single curve, showing that the pumping speed

Q/GD uniquely depends on the forcing speed.

Let us first understand this data collapse. In fact, the

forcing speed faL/G is the characteristic speed of the fluid,

filling and exiting the channel, at both ends of the tunnel.

The reasoning is the following: over one period of forcing

oscillation, the average size of the two openings is 2GD.

During the compression cycle of the forcing, the volume of

the tunnel changes from ðGþ a=2ÞLD to ðG� a=2ÞLD,

which is aLD. During this half cycle, which takes time 1/2f,
the incompressible fluid exists the tunnel. The characteristic

speed is thus (2f)(aLD)=2GD¼ faL=G, same as that for the

expansion cycle. Since usually we have D� G, the pumping
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mechanism is essentially two-dimensional, independent of

D. The Reynolds number of the system, which is the charac-

teristic ratio between initial force and viscose action, can be

defined as ðfaL=GÞ � d � ð1=�Þ ¼ faLd=G�, where � is the

kinematic viscosity of the fluid. Since d and � are constant in

our experiment, the horizontal axis or the control parameter

in Fig. 2(b) can be regarded as the Reynolds number. The

data collapse seen in Fig. 2(b) suggests that the fluid-

pumping mechanism is due to the finite Reynolds-number

effect or the inertial effect. Here, the characteristic length

involved in the Reynolds number expression is the depth d
of the teeth, setting the size of the recirculation eddy next to

each tooth. The choice of this expression (rather than scaling

the Reynolds number on the channel gap G) will be justified

later. Going back to Fig. 2, we find the threshold of the

pumping mechanism to be around Re� 1800. This large

Reynolds number again implies that the pumping phenom-

enon is due to an inertia effect, which is only effective at

high flow rates but will not work at the viscose limit. We

note here that the value of the threshold Reynolds number is

much higher than the one observed in works on similar peri-

odically constricted geometry (Re� 50 see, for instance,

Ref. 12). However, those previous works were conducted

using an imposed steady flow that makes the comparison

difficult with our time-dependent system in terms of flow-

transition. Nevertheless, the inertial flow separation mecha-

nisms described above, which will be seen to be at the base

of the pumping phenomenon, are similar.

Now we investigate the working principle of this fluid

ratchet. In order to reveal the effect of the geometric asym-

metry on the fluid, we first measure the flow flux when the

tunnel is held steady (a¼ 0) and at an imposed pressure drop

qgDh, where q and g are the fluid density and g the accelera-

tion of gravity, respectively. Not surprisingly, Fig. 3 shows

the difference between two fluid fluxes: the flux goes with

the teeth direction is higher than that against the teeth direc-

tion. This implies that the flow going from left to right expe-

riences less impedance than that going from right to the left.

In another word, it is easier to flow to the right and more dif-

ficult to flow to the left. This behavior is due to the inertial

characteristic of the flow, coupled to the asymmetry of the

teeth geometry. The vortices trapped within the teeth corre-

spond to lost kinetic energy. Depending on the flow direc-

tion, the size and strength of the trapped eddies in the

cavities may be different. The impedance difference

observed in both directions can be defined by two drag coef-

ficients C6
d characterizing a measure of flow losses in the

channel, where the signs þ and – refer to the flow, aligned

FIG. 1. Two schematic views of the

experimental setup: (a) and (b) Two

sawtooth-shaped panels were placed

facing each other to form a channel,

which connects the left and right

chambers. The bottom sawtooth sits

immobile in the fluid tank and the

upper one is driven by a shaft, at a con-

trolled frequency and amplitude. Once

in action (switched on), fluid can be

transported from the left to the right.

The maximum pressure buildups and

the maximum flow rates are measured

separately. Flow visualization (c)

within the gap, with polystyrene beads

and a laser sheet, shows an instance as

the upper saw-tooth moves up and the

fluid fills the opening gap. Notice that

the stagnation point between the two

refilling flows is off the center and to

the right.

FIG. 2. Fluid pumping rates are plotted against dimensional driving speeds in

the vertical direction (when Dh¼ 0). Top: Experimental data are shown in

eight groups of channel gap G and forcing amplitude a against the driving fre-

quency f. As a function of the characteristic driving speed fa, the ratchet starts

to pump fluid when fa exceeds a threshold, which depends on G, a, and f.
Inset: a table of symbols that are grouped with G and a. Bottom: Normalized

pumping speeds Q/GD verses the normalized forcing speed faL/G. The same

data shown on the top now collapse onto a common curve.
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with and against the teeth/pumping direction, respectively.

This method of characterization for channel flows has been

extensively studied, for instance, in the context of heat trans-

fer, for estimating the energy losses in longitudinal vortices

(see Ref. 13). Because of the asymmetric teeth design, favor-

ing flow going from left to right, we have Cþd < C�d .

Measurements for our corrugated channel gave the following

drag coefficients in both directions Cdþ¼ 2.6 and

Cd� ¼ 3:2.14 We note that in this steady flow experiment,

the threshold Reynolds number is about Re� 80, which is

consistent with Ref. 12. When the forcing is activated, the

consequence of above effect is shown in Fig. 4. During the

opening phase, fluid has to fill up the opening tunnel and two

opposing flows meet somewhere in the middle of the tunnel.

Since the two flows have different impedances, they two

meet at a point somewhere to the right side (top panel).

During the closing phase, fluid exits the tunnel and the

separation point of the two opposing flows shifts somewhere

to the left at a distance DS away (middle panel). As a result,

a volume of fluid, shown as the dashed area multiplied by

the tunnel depth D, is transported to the right, following the

direction of the teeth.

Flow visualization of the meeting position between the

two flows confirms this mechanism. Shown in Fig. 5, the

shift of the meeting position can be identified and measured

by the strike-pattern of the particles. Below frequency

f¼ 2 Hz, which is below the critical Reynolds number, the

meeting position stays put, at the axis of symmetry of the

system. Above a threshold, DS 6¼ 0, the fluid starts to be

pumped. Quantity DV¼ aDDS is the volume of the fluid

been pumped from left to right per cycle and the flux is

afDDS. Indeed, plot fDS vs. f does show the same character-

istics as shown in Fig. 2(b). Unlike a conventional channel

flow, trapped eddies between the teeth, as shown in Fig. 1(c),

offer a slip conditions for the main flow occurring in the

middle of the channel. This slip condition discards the role

of viscosity in dissipating energy due to shear stresses in the

velocity profile. Hence, the amount of kinetic energy pro-

vided by the pressure drop is mainly divided into the kinetic

energy of the main channel flow and the kinetic energy lost
in creating the eddies. Thus, for a smooth channel of length

L and gap G with slip conditions, the total kinetic energy is

E0 ¼ qU2
0GLD=2, where U0 is the velocity at the entrance of

the channel (set by the water height in a free fall configura-

tion). In our corrugated channel, this energy becomes

q �U
2
GLD=2þ qC6

d
�U

2
Nd2D=2, where �U indicates the mean

velocity in the channel, and N is the number of teeth on each

panel. This simple partition gives an expression for the mean

velocity �U

�U
6 ¼ U0

1þ c6ð Þ1=2
; (1)

where c6 ¼ Nd2

GL C6
d ¼ d

G C6
d are geometrical parameters

involving the drag coefficients Cþd and C�d in both directions

and the ratio between the volume of fluid within the teeth

and the channel. Physically, the drag coefficients express the

asymmetry of the teeth design, whereas the ratio d
G plays the

role of an amplification factor. When the system is under pe-

riodical forcing, the time s¼ 1=2f for two particles of fluid

coming from the opposite sides of the channel to meet inside

at a location x is s ¼ 1=2f ¼ x= �U
þ ¼ ðL� xÞ= �U

�
. It is then

easy to estimate the shift DS, which reads

DS ¼ 2x� L ¼ L
2

1þ cþ

1þ c�

� �1=2

þ 1

� 1

0
B@

1
CA: (2)

It is worth to note that the shift DS is constant (for a given G),

which is in agreement with the observations of Fig. 5 and

only depends on the difference between drag coefficients, or

impedance (i.e., depends only on the teeth design). Of course,

this explanation only holds for cases that are far from the vis-

cous limit, at high Reynolds numbers. The pumping rate of

our ratchet also depends sensitively on the gap G. Shown in

Fig. 6, the maximum pressure head can be achieved, where

Q¼ 0 decreases monotonically with increased G. The

FIG. 3. Asymmetric flow rates measured at fixed gap G¼ 2.25 mm when the

channel is stationary (a¼ 0). The upper curve shows a higher flux (Qþ),

when the flow goes with the teeth direction, than that in the opposite direc-

tion (Q�), at the same but opposite pressure head Dh. From these results, we

found the drag coefficients in both directions Cdþ ¼ 2:6 and Cd� ¼ 3:2.

FIG. 4. Schematic of the pumping mechanism. Top: During the opening

cycle, two opposing flows fill the tunnel and meet somewhere in the middle

but biased to the right. This is due to the smaller impedance for the right-

ward flow. Middle: During the closing cycle, the fluid flows out from the

center of the channel but the separation is biased to the left. Bottom: The

shift DS thus defines a volume of fluid, shown as the dashed area multiplied

by the tunnel depth D, which is transported to the right, following the direc-

tion of the teeth.
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pumping flux Q, however, is a non-monotonic function of G.

It climbs to a maximum value at a moderate value of G and

then decreases as G is further increased. For the flux depend-

ency on G, the increasing stage may be understood by consid-

ering the confinement effect due to the small volume

involved in that regime (as we expect Q ! 0 when G ! 0).

It has a finite starting value of flux due to the fact that G is fi-

nite (G> a=2). The decreasing phase of Q, however, comes

from to the fact that the mean flux is not only a function of

the driving speed fa but also of the ratio between the volumes

of fluid within the teeth and the channel through the geomet-

rical function ð1þ cþÞ=ð1þ c�Þ. This is an increasing func-

tion of G that asymptotically approaches to unity, which will

lead to DS¼ 0 as shown in Eq. (2). This result is consistent

with the observation from our experiment (Fig. 6). We envi-

sion that the ratchet pump discussed in this work might invite

some practical applications. Unwanted and sometimes

dangerous vibration can be found near heavy machineries.

Such vibration can be damped and even be used as ratchet

pumps discussed here. Say, for example, coolant fluid can be

pumped and circulated around such machines, which may

improve the longevity of the machines and leads to better

working environment. Some biological systems could have

benefited from this ratcheting effect to pump body fluids

around. Its usefulness will be the subject of our future

studies.
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FIG. 5. Flow visualization of the cen-

tral portion of the oscillating channel,

during its closing phase (a) and open-

ing phase (b). Two opposing flows

meet at different locations as seen

from the tracing particles, indicated by

the dashed lines. The shift DS is meas-

ured and plotted in (c) against the forc-

ing frequency. Above a finite

frequency, the shift DS stays essen-

tially constant. As shown in the inset,

quantity fDS shows the same trend as

the pumping flux, as in Fig. 2(b). Here

G¼ 2.25 mm and a¼ 1.95 cm.

(Multimedia view) [URL: http://

dx.doi.org/10.1063/1.4906927.1]

FIG. 6. As a function of the gap G between the two sawtooth, maximum

pressure head achieved by the ratchet pump decreases monotonically

(circles). The maximum pumping flux (squares), however, changes with G
in a nonlinear fashion.
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